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A FLIGHT INVESTIGATION OF ABLATION ON A 

BLUNTEE CYLINDER-FLARE CONFIGURATION 

TO A MACH NUMBER OF 8.48 

By Clyde W. Winters and W i l l i a m  G. Witte 
Langley Research Center 

SUMMARY 

A three-stage rocket-propelled research-vehicle system w a s  flown t o  a max- 
i m u m  Mach number of 8.48 at an a l t i t u d e  of  25,000 f ee t ,  t o  determine t h e  abla- 
t i o n  cha rac t e r i s t i c s  of Teflon i n  f r e e  f l i g h t .  Continuous in - f l i gh t  measure- 
ments were made on t h e  f r o n t  face  of t h e  model by using variable-capacitance 
sensors.  The ablated-length measurements were i n  good agreement w i t h  a n a l y t i -  
c a l  predict ions.  I n  addition, temperature measurements were obtained under an 
unprotected inconel segment and a Teflon and inconel composite segment on a 
cy l ind r i ca l  t e s t  sec t ion  and on t h e  s t a b i l i z i n g  f l a r e  of t h e  model. Heating 
r a t e s  computed from these  measurements were i n  good agreement with predicted 
values .  
ab la t ion  r a t e s  on t h e  Teflon and inconel composite cy l ind r i ca l  t e s t  sec t ion .  
Ins ide  inconel w a l l  temperatures obtained from t h i s  program were i n  good agree- 
ment with measured temperatures. 

A n  NASA computer program was used t o  obtain temperature h i s t o r i e s  and 

INTRODUCTION 

Within t h e  pas t  decade ab la t ion  mater ia ls  have become of p a r t i c u l a r  i n t e r -  
The use of ab la to r s  f o r  thermal pro tec t ion  on high- est t o  the aerodynamicist. 

speed bodies has become an accepted compromise between weight and pro tec t ive  
temperature . 

The ea r ly  work i n  t h i s  f i e l d  had as a prime object ive t h e  q u a l i t a t i v e  
assessment of t h e  po ten t i a l s  of ab la t ing  materials as r e l a t ed  t o  heat ing r a t e s  
encountered during f l i g h t .  A t h e o r e t i c a l  treatment ( ref .  l), f o r  ab la t ing  
mater ia l s  which sublime r a the r  than melt, has indicated ce r t a in  des i rab le  prop- 
e r t i e s  for such materials. Other s tud ies  have shown t h a t  t he  absorption of 
heat  involves a number of complex mechanisms which require  knowledge of  t he  
material proper t ies  i n  various states f o r  a complete ana ly t i ca l  t reatment .  

A s  work progressed i n  t h i s  f i e l d ,  it became apparent t h a t  t h e  heat-  
blocking capacity or p o t e n t i a l  of ablat ing mater ia l s  depended very s t rongly on 
t h e  enthalpy d i f fe rence  across  t h e  boundary l aye r  ( r e f .  2).  Experiments were 



conducted at  both low and high enthalpies  and t h e  results c l ea r ly  indicated 
t h a t  t h e  enthalpy parameter has a powerful e f f e c t .  
ana ly t i ca l  work (ref. 3) produced procedures s u i t a b l e  f o r  predict ing t h e  effec-  
t ive  hea ts  of ab la t ion .  

Ensuing experimental and 

I n  view of NASA objec t ives  t o  f l y  supercircular-veloci ty  spacecraft  with 
eventual reentry i n  t h e  e a r t h ' s  atmosphere, t h e  Langley Research Center under- 
took a f l i g h t - t e s t  research pro jec t  t o  v e r i f y  these  ab la t ion  parameters under 
ac tua l  f l i g h t  conditions (ref. 4) .  
b a s i s  f o r  t h e  design information needed f o r  t h e  missions with high ve loc i ty  
requirements. 

The da ta  thus  obtained would provide a 

This report  descr ibes  t h e  performance of t h e  ab la t ion  material, Teflon, 
f o r  a p a r t i c u l a r  f l i g h t  t r a j ec to ry .  Teflon w a s  chosen f o r  t h e  t e s t  material 
because i t s  physical  and thermal proper t ies  were r e l a t i v e l y  w e l l  known and a 
working Teflon ab la t ion  sensor had been developed ( r e f .  5 ) .  The f l i g h t  t e s t  
w a s  made by use of a three-s tage solid-propellant rocket which car r ied  t h e  t es t  
model t o  a m a x i m u m  Mach number of .8.48 at  an a l t i t u d e  of 25,000 f e e t .  Ablated- 
length measurements were made over a Mach number range increasing from 5.30 
t o  8.48 and then decreasing t o  5.85. 
number ranged from 22 x 10 6 t o  28 x lo6 and then decreased t o  4.3 x lo6. 

The corresponding free-stream Reynolds 

Besides t h e  ab la t ion  da ta  on t h e  nose, temperature measurements were made 
so t h a t  t h e  heat  t r a n s f e r  on t h e  model cy l ind r i ca l  sec t ion  and t h e  s t a b i l i z i n g  
f l a r e  could be determined. 

SYMBOLS 

s p e c i f i c  hea t  at  constant pressure, Btu/lb-'R 

acce lera t ion  due t o  gravity,  32.2 f t / s e c  2 

e f f ec t ive  hea t  of ablat ion,  Btu/lb 

enthalpy, Btu/lb 

mechanical equivalent of heat, 778.26 ft-lb/Btu 

length, i n .  

Mach number 

ab la t ion  rate, lb/(  sq  f t  ) ( see )  

heating rate, Btu/( sq f t  ) ( see)  

Reynolds number pe r  foot  

lateral  radius  of nose, i n .  

i 



T C  radius  of curvature of nose, i n .  

P density,  lb/cu f t  

densi ty  of Teflon vapor, lb/cu f t  PC 

S dis tance  along t h e  model surface, measured from t h e  s tagnat ion point,  
i n .  

T temperature, OR or  O F  as indicated 

t time, sec 

v veloci ty ,  f t / s e c  

Subscripts : 

a w  ad iaba t ic  w a l l  

C coolant or Teflon gas 

2 l o c a l  

s 2  sea l e v e l  

0 i n i t i a l  condition 

t stagnat ion 

W w a l l  ou te r  surface 

00 free stream 

MODEL DESCRIPTION 

The f i n a l  s tage  of a three-stage rocket w a s  used f o r  t h e  tes t  model. (See 
f i g .  1.) Three sec t ions  of t h i s  model, t h e  nose cone, t h e  cylinder, and t h e  
s t a b i l i z i n g  f l a r e  ( f i g .  2 ) ,  were spec ia l ly  constructed and instrumented f o r  t h e  
t e s t i n g  and ana lys i s  of Teflon. The primary objec t ive  of t h e  tes t  w a s  t o  meas- 
ure  Teflon ab la t ion  o n ' t h e  nose of t h e  model. I n  order  t o  minimize t h e  var ia-  
b l e s  of t h i s  t es t  a nose shape w a s  chosen t h a t  had e s s e n t i a l l y  constant heat ing 
rates across i t s  surface.  Secondary object ives  of t h e  t es t  w e r e  t o  measure t h e  
effect iveness  of Teflon coatings on t h e  cyl inder  and flare of t h e  model. 

Nose Cone 

The Teflon nose cone ( f i g .  3) w a s  a body of revolut ion 12.10 inches i n  
and a loo half-angle f l a r e d  length, having a blunted face  with r/rc = 1/3 
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afterbody. Five ab la t ion  sensors w e r e  mounted as shown 2n f igure  3.  The lon- 
g i t u d i n a l  axes of t h e  sensors were normal t o  t h e  surface and i n  a plane passing 
through t h e  ax is  of revolution of t h e  Teflon nose. Sensor 2 w a s  located on t h e  
f r o n t  face at t h e  stagnation point .  Sensors 1 and 3 were located on t h e  f r o n t  
face, also,  at s/r = 0.62. 
Ablation da ta  a r e  presented only f o r  sensors 2 and 3. Sensors 1, 4, and 5 
became defect ive p r i o r  t o  t h e  tes t  portion of t h e  f l i g h t .  

Sensors 4 and 5 were located on the  10' f l a r e .  

Cylindrical  Test, Section 

The c y l i n d r i c a l  t e s t  sect ion consisted of t h e  forward 12 inches of t h e  
cy l indr ica l  port ion of the  model. 
mentation of t h i s  sect ion.  The t e s t  sect ion w a s  divided a x i a l l y  i n t o  two equal 
segments. One segment w a s  made of 0.077-inch inconel.  The other  segment w a s  
a composite of 0.032-inch Teflon sheet bonded t o  0.052-inch inconel, with t h e  
external  l a y e r  being Teflon. Three 30-gage chromel-alumel thermocouples were 
spotwelded t o  t h e  ins ide  inconel w a l l  of each segment a t  t h e  locat ions indi-  
cated i n  f igures  2 and 4. Temperature measurements were obtained f o r  all s i x  
locat ions.  

Figures 2 and 4 show t h e  geometry and ins t ru-  

S tab i l iz ing  F l a r e  

The 10' half-angle s t a b i l i z i n g  f l a r e  of t h e  third-s tage sus ta iner  motor 
( f i g .  2)  w a s  t r e a t e d  i n  a manner similar t o  t h e  cy l indr ica l  t e s t  sect ion 
described previously. It w a s  divided a x i a l l y  i n t o  two equal segments, with one 
segment made of 0.077-inch inconel and t h e  other  a composite of 0.032-inch 
Teflon sheet bonded t o  0.055-inch inconel, with t h e  external  layer  being Teflon. 
Two 30-gage chromel-alumel thermocouples were spotwelded t o  the  ins ide  inconel 
w a l l  of each segment at  t h e  locat ions shown i n  f igure  2. Temperatures were 
obtained under t h e  unprotected inconel segment, but both thermocouples under 
the  composite malfunctioned and no data  were obtained f o r  t h a t  segment. 

INSTRUMENTATION AND TELEME;TRY 

The instrumentation f o r  t h e  f l i g h t  consisted of 4 l i n e a r  accelerometers, 
5 Teflon ab la t ion  sensors, and 10  thermocouples. 
e t e r  w a s  used t o  transmit t h e  da ta  from t h e  model t o  t h e  ground s ta t ion .  The 
l i n e a r  accelerometers, t h e  thermocouple commutator, and t h e  telemeter package 
were located i n  t h e  cy l indr ica l  t e s t  sect ion forward of t h e  third-s tage sus- 
t a i n e r  motor. 

A standard 10-channel telem- 

Four channels of t h e  10-channel telemeter were used f o r  t h e  4 l i n e a r  
accelerometers. Two accelerometers measured longi tudinal  accelerations,  one 
measured normal accelerations,  and one measured t ransverse accelerat ions.  

A s ing le  commutated channel was used f o r  telemetering t h e  thermocouple 
data.  It w a s  commutated so t h a t  f ive  temperature readings per second were 
obtained f o r  each of t h e  10 thermocouples. 
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Five channels were used f o r  t he  f i v e  Teflon ab la t ion  sensors. The Teflon 
ab la t ion  sensor i s  a device t h a t  i s  used t o  obtain in - f l i gh t  neasurements of 
changes i n  the  thickness of Teflon as a r e s u l t  of ab la t ion .  The da ta  from the  
sensor a re  transmitted through t h e  telemeter as o s c i l l a t o r  frequency charges. 
A descr ipt ion of t h i s  sensor i s  presented i n  appendix A. 

LAUNCH VEHICLE AND FLIGHT T W E C T O R Y  

The assembled vehicle  i s  shown i n  figure 5 .  The f l i g h t  t r a j e c t o r y  from 
t h e  launch vehicle  w a s  such as t o  produce an appropriate envirorunent f o r  t h e  
evaluation of t h e  Teflon ab la t ion  material. The propulsion system consisted of 
t h r e e  stages which w e r e  solid-propellant rocket motors. The f i r s t  and second 
s tages  w e r e  f i n - s t ab i l i zed  Nike M 5  rocket motors. The third-s tage sus t a ine r  
w a s  a f l a r e - s t a b i l i z e d  XMl9 Recruit rocket motor. A cy l ind r i ca l  t r a n s i t i o n  
sec t ion  formed a permanent attachment between t h e  third-s tage sus t a ine r  motor 
and t h e  Teflon nose. 

The vehicle w a s  ground launched a t  an e levat ion angle of 68' from t h e  
horizontal  on an azimuth of 80° from t r u e  north.  
tory,  a l t i t u d e  p lo t t ed  aga ins t  range, i s  shown i n  f igu re  6 .  Notations are made 
on t h e  f igu re  t o  ind ica t e  t h e  t i m e  sequence of various events. 

The measured f l i g h t  t r a j e c -  

Time h i s t o r i e s  of t h e  ve loc i ty  and a l t i t u d e  are shown i n  figure 7. The 
curves were obtained from radar data .  A s  a check on t h e  veloci ty  obtained from 
t h e  radar, t h e  h i s t o r i e s  of t h e  longi tudinal  accelerometers were integrated and 
t h e  values obtained a r e  shown by c i r cu la r  symbols. The accelerometer d a t a  
e s s e n t i a l l y  follow t h e  da t a  obtained from t h e  radar; however, t he  accelerometer 
da t a  were used i n  reducing t h e  da t a  from t h e  model. Two hours before launch, 
t h e  density, temperature, and wind va r i a t ion  were measured t o  an a l t i t u d e  of 
91,000 f e e t .  The v a r i a t i o n  o f  t h e  ambient values of densi ty  and temperature 
with t i m e  a r e  shown i n  f i g u r e  8, along with the  calculated va r i a t ion  of t h e  
f l i g h t  stagnation temperature. The t i m e  h i s t o r i e s  of free-stream Mach number 
and free-stream Reynolds number pe r  foot  are shown i n  f igu re  9 .  

The t e s t  environment ranged from an a l t i t u d e  of 18,000 f e e t  to 63,000 f e e t ,  
over a Mach number range increasing from 5.85 t o  8.48 and then decreasing t o  
5.80 with corresponding free-stream Reynolds numbers per  f o o t  increasing from 

conditions presented i n  t h i s  sec t ion  were used i n  t h e  reduction of t h e  d a t a  
obtained from t h i s  experiment. 

22.0 x 10 6 t o  28.0 x lo6 and then decreasing t o  4.30 x lo6- The environmental 

RESULTS AND DISCUSSION 

The ab la t ion  measurements on t h e  Teflon nose and t h e  temperature measure- 
ments and heating rates on the cy l ind r i ca l  t e s t  s ec t ion  and on t h e  s t a b i l i z i n g  
f lare  a r e  presented i n  t h i s  sec t ion .  Also presented here are t h e  r e s u l t s  of 
two methods of predict ing t h e  ab la t ion  c h a r a c t e r i s t i c s  of Teflon. One method 



predic t s  t h e  ablated-length changes of t h e  Teflon nose. 
d i c t s  ab la t ion  r a t e s  and temperature h i s t o r i e s  on t h e  cy l indr ica l  t e s t  sect ion.  
The r e s u l t s  and discussions a r e  presented i n  t h r e e  sections, one f o r  each of 
t h e  t h r e e  model t e s t  sect ions.  

The other  method pre- 

Teflon Nose 

The ab la t ion  da ta  obtained during t h e  f l i g h t  between M = 5.30 and 
M = 8.48 
plo t ted  against  time; these  measured values are indicated by c i r c u l a r  and 
square symbols, respectively.  Values are shown from t = 7.0 seconds t o  
t = 15.5 seconds. P r i o r  t o  t = 7.0 seconds and a f t e r  t = 15.5 seconds t h e  
sensors indicated no measurable ablat ion.  

from sensors 2 and 3 a r e  presented i n  f i g u r e  10 as ablated length 

I n  f i g u r e  11, t h e  e f fec t ive  heat of ab la t ion  heff i s  shown as a function 

of t h e  modified enthalpy p o t e n t i a l  parameter (Haw - H w ) r  - p’l9. These 

da ta  were obtained i n  t h e  modified enthalpy p o t e n t i a l  range f o r  Teflon of l5O 
t o  1,150 Btu/lb. 
t h e  nose sensors during t h e  t e s t  a r e  presented i n  f i g u r e  12. These d a t a  of 
f igures  11 and 12, used i n  conjunction with o t h e r  Information obtained from 
reference 3, permit ablated-length changes t o  be computed. Basically, t h e  com- 
putat ion method involves t h e  use of empirical  re la t ionships  which define t h e  
behavior of  a b l a t i v e  mater ia ls  i n  general  and of Teflon i n  par t icu lar .  It i s  
of i n t e r e s t  t o  compare t h e  r e s u l t s  determined by calculat ion with those measured 
during f l i g h t .  Therefore, computations were made which corresponded t o  t h e  
f l i g h t  time from 7.0 seconds t o  15.5 seconds. These d a t a  a r e  shown by the s o l i d  
curves of f i g u r e  10. The mechanics of t h e  computational procedure a r e  tedious 
and appendix B has been included t o  describe t h e  method used and t h e  deriva- 
t i o n s  of t h e  curves presented i n  f igures  11 and 12. 

P,1 w 

Theoretical  e f fec t ive  hea ts  of ab la t ion  and heating rates f o r  

The agreement between the  computed ablated-length changes and t h e  measured 
data  of f i g u r e  10 i s  excel lent .  With t h e  exception of a few data  points  t h e  
experimental d a t a  agree with t h a t  predicted by theory.  The ablated-length 
changes with time a r e  e s s e n t i a l l y  t h e  same f o r  both sensors on t h e  f r o n t  face.  
The sensor located at  t h e  stagnation point (sensor 2)  indicated an ablated 
length of 0.072 inch, whereas t h e  sensor located a t  
cated an ablated length of 0,077 inch. 

s/r = 0.62 (sensor 3) indi-  

The s o l i d  curve shown i n  f i g u r e  13 w a s  obtained from f igure  7 of re fer -  
ence 3 and i s  t h e  predicted effect iveness  of Teflon f o r  t h e  three-dimensional 
laminar stagnation-point case. The measured ab la t ion  da ta  from t h e  front-face 
sensors a r e  indicated by da ta  symbols. This f i g u r e  i l l u s t r a t e s  again t h e  good 
agreement between t h e  f l i g h t  da ta  and theory. 
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Cylindrical  Test Section 

Cylinder heat  t ransfer . -  Fai'red curves showing t h e  va r i a t ion  of ins ide  
w a l l  temperature with time f o r  t h e  segment of unprotected 0.077-inch inconel 
and t h e  composite segment of 0.052-inch inconel and 0.032-inch Teflon a re  
p lo t t ed  i n  f igu re  14.  The temperatures f o r  t h e  thermocouples i n  t h e  same rear-  
ward location, but i n  diametr ical ly  opposed pos i t ions  a r e  shown together .  The 
temperature h i s t o r i e s  demonstrate c l ea r ly  t h e  thermal pro tec t ion  provided by an 
ab la t ion  coating. The temperature r i s e  of t h e  th inner  inconel sheet covered 
with Teflon i s  less than  ha l f  t h a t  of t h e  th i cke r  unprotected inconel shee t .  

Experimental heat ing rates f o r  t h e  0.077-inch inconel segment a r e  indicated 
i n  f igu re  15 by c i r c u l a r  symbols. 
used t o  obtain these  values.  

. heat  flow p a r a l l e l  t o  t h e  p l a t e  and no p l a t e  curvature i s  considered. The da ta  
of f i g u r e  14  were used t o  compute t h e  outs ide surface temperatures and then the  
outs ide surface temperatures were used t o  compute the  one-dimensional heating 
r a t e  presented i n  figure 15. 

The computational method of reference 6 w a s  
I n  t h i s  method, a thermally th i ck  w a l l  with no 

The measured f l i g h t  aerodynamic conditions were used i n  conjunction with 
laminar and turbulent  hea t - t ransfer  theor ies  t o  obtain t h e o r e t i c a l  heating 
r a t e s  f o r  t h e  cy l ind r i ca l  t e s t  sect ion.  These da ta  a r e  shown i n  f igu re  15. 
The theo re t i ca l  heat ing r a t e s  f o r  a turbulent  boundary l aye r  were computed by 
t h e  method of reference 7. 

The agreement between t h e  experimental da ta  and t h e  turbulent  theory i s  
very good up t o  t = 10.0 seconds, after which t h e  experimental r a t e s  approach 
and in te rcept  t h e  laminar-theory curve. The lowered heat ing r a t e s  may indica te  
downstream cooling e f f e c t s  due t o  t h e  e jec t ion  of coolant m a s s  from t h e  Teflon 
nose i n t o  t h e  boundary l aye r .  However, computations of downstream cooling 
e f f e c t s  were inconclusive, because of t h e  uncertain$y of f l o w  conditions and 
ab la t ion  r a t e s  along t h e  cone f l a r e  of t h e  Teflon nose. 

Cylinder ablat ion.-  The in - f l i gh t  ab la t ion  performance of r e l a t i v e l y  t h i n  
Teflon sheets,  such as t h e  l aye r  i n  t h e  composite segment of  t he  cy l ind r i ca l  
t e s t  section, cannot be measured d i r e c t l y  a t  present by ab la t ion  sensors or 
other  means. However, a good accounting of t he  performance may be obtained 
with t h e  ass i s tance  of a Langley Research Center computer program based on t h e  
ana lys i s  of reference 8. 
primary inputs  f o r  t h e  program. Among t h e  outputs received from t h e  program 
a r e  surface temperatures, i n s ide  w a l l  temperatures, and ab la t ion  r a t e s .  It 
should be noted t h a t  when a constant value f o r  ab la t ion  temperature i s  assumed, 
t h e  program shows no ab la t ion  u n t i l  t h e  surface temperature reaches t h i s  value, 
and then during ab la t ion  t h e  surface temperature i s  l imi ted  t o  t h i s  assumed 
value. The computer program w a s  used t o  obtain t h e  temperatures and the  abla- 
t i o n  r a t e s  p lo t t ed  i n  f i g u r e  16. 
Teflon surface-temperature curve during t h e  t i m e  of ablation, an ab la t ion  tem- 
perature  of 1,2000 F w a s  assumed. 
curve, s t a r t i n g  at about 6.5 seconds, i s  a r e s u l t  of t h e  change i n  enthalpy due 
t o  t h e  decrease i n  free-stream ve loc i ty  a f t e r  burnout of t h e  second-stage motor. 
Also p lo t t ed  i n  f i g u r e  16 and indicated by c i r c u l a r  symbols are t h e  measured 

Material  p roper t ies  and t r a j e c t o r y  parameters a r e  t h e  

A s  shown by t h e  f l a t t e n e d  port ion of  t h e  

The de f l ec t ion  i n  t h e  surface-temperature 
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i n s ide  w a l l  temperatures along t h e  composite segment. Although several  sources 
have l is ted d i f f e r e n t  values f o r  thermal conductivity of Teflon, t he  value used 
i n  t h i s  study i s  35.5 Btu/(sq f t ) ( sec ) (OF/ f t ) .  When t h i s  value w a s  used i n  t h e  
computer program, good agreement between t h e  measured and t h e  computed ins ide  
w a l l  temperatures w a s  obtained as shown i n  f igu re  16. This agreement increases  
confidence i n  t h e  r e l i a b i l i t y  of t h i s  value. 

A comparison of t h e  curves f o r  t h e  three  thermocouple locat ions shows t h a t  
t h e  ab la t ion  rates are e s s e n t i a l l y  constant.  This r e s u l t  i s  expected because 
t h e  heating rates f o r  t h e  th ree  loca t ions  were e s s e n t i a l l y  constant a l so .  

S t ab i l i z ing  F lare  

F lare  . ~ .  heat t r ans fe r . -  - Faired temperature h i s t o r i e s  of t he  ins ide  w a l l  t e m -  
peratures  measured under t h e  inconel segment of t h e  s t a b i l i z i n g  f l a r e  a re  shown 
i n  f igu re  17. 
temperatures measured on o ther  pa r t s  of t h e  model. 

The temperatures a r e  consis tent  w i t h  each o ther  as w e l l  as w i t h  

Experimental heat ing rates based on t h e  measured temperatures were com- 
puted by t h e  method of reference 6. 
symbols i n  f igu re  18. Theoret ical  turbulent  heating r a t e s  were computed by t h e  
method of reference 7, and are indicated by t h e  s o l i d  l i n e s  i n  f igu re  18. 
experimental heat ing rates and t h e  t h e o r e t i c a l  tu rbulen t  heating r a t e s  a r e  i n  
close agreement. 

These values a r e  indicated by c i r c u l a r  

The 

CONCLUDING REMARKS 

A f r ee - f l i gh t  inves t iga t ion  w a s  made of t h e  ab la t ion  rates and shielding 
e f f e c t s  of Teflon i n  high-speed f l i g h t  through t h e  atmosphere. Ablated-length 
measurements were made on t h e  f r o n t  face  of t h e  t es t  model and temperature meas- 
urements were made on a cy l ind r i ca l  t e s t  sec t ion  and on the  s t a b i l i z i n g  flare. 

The ab la t ion  data obtained on t h e  f ron t  face  of t he  Teflon nose were i n  
excel lent  agreement with theory.  Ablated-length time h i s t o r i e s  computed from 
t h e o r e t i c a l  Teflon ab la t ion  re la t ionships  matched very closely t h e  measure- 
ments obtained from abla t ion  sensors.  
Teflon agreed c lose ly  with predicted effect iveness .  

Also, t h e  measured effect iveness  of t h e  

Measured heat ing r a t e s  f o r  t h e  cy l ind r i ca l  tes t  sec t ion  were i n  good agree- 
ment with t h e o r e t i c a l  tu rbulen t  heating r a t e s  f o r  more than ha l f  of t h e  t es t  
por t ion  of t h e  f l ight.  
heat ing r a t e s  diminished below t h e  t h e o r e t i c a l  turbulent  values and f i n a l l y  
diminished below t h e o r e t i c a l  laminar values. 

But during t h e  last  p a r t  of t h e  t e s t ,  t h e  measured 

A Langley Research Center computer program w a s  used t o  obtain an ana lys i s  
of the abla t ion  rates and temperature d i s t r ibu t ions  of t h e  composite Tef1o.n and 
inconel segment loca ted  i n  t h e  cy l ind r i ca l  t es t  sect ion.  The ins ide  w a l l t e m -  
peratures  obtained from t h e  program were i n  good agreement with t h e  measured 
in s ide  w a l l  temperatures. This agreement ind ica tes  t h a t  t h e  computer program 

a 
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can give an accurate accounting of t h e  performance of an ablat ing materi'al such 
as Teflon and, therefore,  can be used i n  t h e  design of an ablat ion coating. 

The measured heating rates on t h e  s t ab i l i z ing  f lare were i n  good agreement 
with theo re t i ca l  turbulent  heating rates. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hmpton, Va., March 25, 1964. 
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APPENDIX A 

SENSOR TELEDQPERING SYSTEM AND WIBRATION PROCmE 

Sensor Telemetering System 

Inasmuch as t h e  ab la t ion  sensor i s  a capacitor, it can eas i ly  be used i n  
a telemetering system using an inductance-capacitance osc i l l a to r .  The standard 
NASA subcarr ier  o s c i l l a t o r  channels i n  t h e  range of 100,000 t o  200,000 cycles 
pe r  second are ideally su i ted  f o r  telemetering t h e  small capacitance changes 
involved. By connecting t h e  capacitor across t h e  parallel-inductance and capac- 
i t ance  c i r c u i t  of t h e  osc i l la tor ,  a change i n  capacitance w i l l  be indicated by 
a change i n  frequency of t h e  osc i l l a to r .  The main frequency-determining element 
of an inductance-capacitance o s c i l l a t o r  i s  t h e  resonant parallel-inductance- 
capacitance c i r c u i t .  

The variable-capacitance ablat ion sensor i s  connected i n  p a r a l l e l  w i t h  t h e  

The hookup of an ab la t ion  sensor i n  an induct- 
main capacitance of t h e  inductance-capacitance o s c i l l a t o r  c i r c u i t  t h a t  deter-  
mines t h e  subcarr ier  frequency. 
ance o s c i l l a t o r  c i r c u i t  i s  shown i n  t h e  following schematic: 

L- 
Modulator Transmit t er 

where 

var iab le  capacitor t o  adjust  osc i l la tor ,  tuning capacitance when 
used elsewhere 

C 1  

c2 . variable-capacitor ablat ion sensor, sensor capacitance when used 
elsewhere 

L tuning c o i l  w i t h  f i v e  taps, inductance of c o i l  when used elsewhere 

A s  t he  ab la t ion  proceeds, t h e  capacitance of t h e  sensor decreases and the sub- 
c a r r i e r  frequency of t h e  o s c i l l a t o r  f correspondingly increases.  The asso- 
c ia ted vacuum-tube c i r c u i t r y  has a negl igible  e f f ec t  on t h e  frequency so tha t  
t h e  in i t ia l  frequency i s  determined by t h e  usual equation 

1 f =  

The var ia t ion  of t h e  frequency Af with var ia t ion  of sensor capacitance AC2 
i s  given by t h e  equation 

10 



For l i nea r i ty ,  it is  des i rab le  t h a t  C 1  be l a rge  r e l a t i v e  t o  C2 i n  order  
t h a t  t h e  f r a c t i o n a l  va r i a t ion  of  t h e  t o t a l  capacitance 
s m a l l .  

C 1  + C2 be r e l a t i v e l y  

A s  an example, t ake  t h e  capacitance C 2  of a 0.75-inch-long sensor t o  be 
250 micromicrofarads. Then, with L = 0.7 mil l ihenry ( t h e  first of t h e  f i v e  
t aps  of t h e  inductance c o i l  of t h e  standard NASA subcar r ie r  o s c i l l a t o r )  and with 
C 1  adjusted so t h a t  
108,500 cycles pe r  second. 
t i o n  sensor w i l l  decrease t h e  capacitance by 166 micromicrofarads and t h e  fre- 
quency w i l l  increase by 2,780 cycles p e r  second, which i s  approximately t h e  
desired value of Af f o r  proper s e n s i t i v i t y .  Using t h e  next t a p  on t h e  c o i l  
would have given a value of Af s l i g h t l y  above 3,000 cycles per  second, which 
i s  a l s o  acceptable. 

C 1  + C2 = 3,245 micromicrofarads, t h e  frequency i s  
Consider t h a t  0.5-inch length decrease of t h e  abla- 

Cal ibrat ion Procedure 

The ab la t ion  sensors cannot ind ica te  length changes d i rec t ly ;  however, as 
t h e  length changes, t h e  frequency s h i f t s  on t h e  te lemeter  record. 
s h i f t s  can then be converted t o  length changes by means of a ca l ib ra t ion  curve 
of length as a funct ion of frequency. 

The frequency 

Since no ca l ib ra t ion  of capacitance as a funct ion of length i s  possible  
without consuming t h e  sensor, t h e  d i r e c t  p ropor t iona l i ty  of capacitance t o  
length as indicated i n  figure 19 w a s  assumed. This assumption, with a cal ibra-  
t i o n  of t h e  o s c i l l a t o r  frequency as a funct ion of sensor capacitance, provided 
t h e  curve of frequency as a funct ion of sensor lengths  shown i n  f igu re  20; t h i s  
curve w a s  used t o  i n t e r p r e t  t h e  t es t  results. 

11 
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APPENDIX B 

AN ANALyTICAL =OD FOR DETERMINING ABLATED-LFNGTH CHANGES 

Computation Procedure 

The ablated-length curves of figure 10 may be computed from 

which i s  a rearrangement of t he  basic  ablat ion r e l a t ion  

Values f o r  6 appearing i n  equation (Bl) may be obtained as  follows: 

An ablat ion rate rh i s  assumed. For t h i s  assumed fi, t h e  values of Tw 
a re  obtained from f igures  9 and 10 of reference 3.  By using these and cp,c 

values and the  other  required values as described i n  t h e  next section, a modi- 
f i e d  enthalpy po ten t i a l  parameter and a heating r a t e  a re  computed. 

A value of .heff which corresponds t o  t h i s  computed modified enthalpy 
po ten t i a l  parameter i s  read from f igure  11. With t h i s  value of heff and the  
computed heating ra te ,  an J% i s  computed from the  equation 

This computed i s  compared with the  assumed &. I f  there  i s  a d i f f e r -  
ence the  computed rh i s  subst i tuted f o r  t he  assumed & and a second rh i s  
computed. The second computed k i s  compared with t h e  second assumed 6, and 
so  on, u n t i l  equal values of rh a re  obtained. Generally, two of these i t e r a -  
t i v e  processes a re  required t o  obtain an 
cent. The values of 6 a re  computed as a funct ion of time and p lo t ted .  Then 
equation (Bl) i s  used t o  compute the  ablated-length curves shown i n  f igure  10. 

6 which i s  accurate t o  within 5 per- 

An Explanation of Figures 11 and 12 

"he curve shown i n  figure 11 i s  reproduced from f igu re  8 of reference 3 
and shows the  e f f ec t ive  heat of ab la t ion  p lo t ted  against  t h e  modified enthalpy 
po ten t i a l  parameter. 

The modified enthalpy po ten t i a l  parameter appearing in f igure  11 is  a mod- 
i f i c a t i o n  of t h e  enthalpy po ten t i a l  computed from t h e  following equation: 

12 
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where 

2gJ energy conversion fac tor ,  assumed t o  be equal t o  50,000 

T, free-stream temperature of a i r  as a function of a l t i t u d e ,  obtained 
from standard charts  of atmosphere 

s p e c i f i c  heat at constant pressure of a i r  as a function of T, 
obtained f r o m t a b l e s  of propert ies  of gases ( r e f .  9 )  P, C 

T W  ablat ing w a l l  temperature of Teflon, obtained from curve of Tw as 
shown i n  f igure 9 of reference 3 or i n  f i g u r e  4 a funct ion of h 

of reference 10. 

I n  t h e  method OF reference 10 t h e  Teflon ablat ing surface i s  assumed t o  be a 
burning surface and t h e  surface temperature t o  be e s s e n t i a l l y  t h e  burning tem- 
perature .  The surface temperature i s  thus dependent on t h e  burning ra te ,  o r  
what would be t h e  ab la t ion  r a t e  i n  t h e  case of ablat ing materials,  and t h e  mate- 
rial propert ies  such as density, thermal conductivity, and s p e c i f i c  heat .  

The s p e c i f i c  heat a t  constant pressure c ~ , ~  represents t h a t  of t h e  Teflon 

vapor. 
molecular weight of approximately 100. 
temperature f o r  t h i s  vapor state i s  given i n  f igure  10 of reference 3. 
vapor temperature i s  assumed t o  be equal t o  t h e  surface temperature or t h e  
Teflon ablat ing w a l l  temperature. 

It i s  assumed t h a t  Teflon vapor consis ts  of C 9 4  molecules having a 

The 
A curve of s p e c i f i c  heat p lo t ted  against  

Other parameters i n  t h e  modified enthalpy p o t e n t i a l  parameter a r e  

a i r  temperature behind strong bow shock, obtained from compressible 
flow t a b l e s  f o r  a i r  

T l  

C s p e c i f i c  heat a t  constant pressure of a i r  as a function of Tz, P, 2 
obtained from charts  of propert ies  of a i r  ( r e f .  9) o r  computed from 

C - - H2 - Hw f o r  values of T l  above 4,000° F 
p,' T2 - Tw 

local enthalpy, obtained from charts  of thermodynamic propert ies  of 
high-temperature a i r  

H l  

Normally cp,c and Tw are obtained as functions of rh from f igures  9 
and 10 of reference 3. 

The e f f e c t i v e  heat of ab la t ion  parameter appearing i n  f i g u r e  11 i s  defined 
as t h e  ne t  aerodynamic heating r a t e  (calculated a t  t h e  temperature of t h e  
ablat ing surface) divided by t h e  rate of ablat ion.  (See eq. ( B 3 ) . )  The values 



of fi 
of e a r l i e r  experimental measurements. 

i n  equation (B3)  are determined by using equation (B2)  with t h e  r e s u l t s  

Figure 12(a)  shows t h e  heating r a t e s  q at  sensors 2 and 3 .  These heating 
r a t e s  were i d e n t i c a l  as a r e s u l t  of t h e  model surface geometry and they were 
computed from t h e  following empirical  formula of reference 11 ( i n  t h e  notat ion 
of t h e  present paper) : 

The heating r a t e s  from t h i s  re la t ionship  a r e  f o r  t h e  s tagnat ion point on a 
hemisphere. Therefore, they were mult ipl ied by 0.71 i n  order t o  correct  them 
f o r  t h e  e f f e c t s  of bluntness according t o  f igu re  3 of  reference 12.  

Figure 12(b)  shows t h e  range of t h e o r e t i c a l  heff obtained from f igu re  11 
and used i n  equation (B3) .  
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Figure 2.- Drawing  of model. All dimensions are in inches. 
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Figure 3 . -  Deta i l s  of model nose. A l l  dimensions a r e  i n  inches. 
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Figure 5.- Photograph of model and boosters i n  launch position. 
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Figure 8.- Time h i s t o r i e s  of ambient conditions and calculated stagnation temperature. 
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Figure 10.- Time h i s t o r i e s  of ablated lengths f o r  ablat ion sensors 2 and 3. 
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Figure 11.- Predicted effectiveness of Teflon material (based on data from re f .  3 ) .  
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Figure 12.- Theore t ica l  e f fec t ive  h e a t s  of ab la t ion  and heat ing rates ca lcu la ted  for nose sensors. 
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Figure 13.- Comparison of flight data with predicted effectiveness of Teflon for three-dimensional laminar stagnation 
point case (data from ref. 3). 
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Figure 14.- Inside wall temperature along cylinder. 
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Figure 16.- Continued. 
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Figure 16 .- Concluded. 
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Figure 17.- Faired ins ide  w a l l  temperatures along calorimeter port ion of model f l a r e .  
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Figure 18.- Comparison of experimental heating ra tes  with V a n  Driest turbulent theory. 
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Capac i tance micromicrof arads 

Figure 19.- Typical curve of v a r i a t i o n  of length with capacitance f o r  an ab la t ion  sensor. 
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Figure 20.- Typical curve of v a r i a t i o n  of frequency with ab la ted  length f o r  an ab la t ion  sensor. 
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